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Convergence of Difference Methods for Initial and 
Boundary Value Problems with Discontinuous Data 

By Bruce Chartres* and Robert Stepleman** 

Abstract. This paper extends the classical convergence theory for numerical solutions 
to initial and boundary value problems with continuous data (the right-hand side) to 
problems with Riemann integrable data. Order of convergence results are also obtained. 

1. Introduction. The purpose of this paper is to show that difference methods 
for solving initial and boundary value problems will converge in a variety of cases 
where the data (the right-hand side) is not well behaved in the classical sense. 

To illustrate this basic idea, we consider two problems: 
1. First, we look at Euler's method for solving initial-value problems on [0, 1]: 

(1.1) y'(t) = j(t, y(t)), y(O) = Yo. 

Classically, for convergence, it is assumed that f satisfies a Lipschitz condition in 
the second variable and yQ) is continuously differentiable (see e.g., Henrici [4], [5]) 
or, at least, piecewise continuously differentiable (see Goodman [3] or Zverkina [7]). 
We obtain the following results: If f is a bounded Riemann integrable function 
along the trajectory and satisfies a Lipschitz condition in its second argument, then 
Euler's method converges; and, if f is of bounded variation along the solution tra- 
jectory, then the convergence is of order h. 

2. Second, we look at the standard simple difference method for solving the 
boundary value problem on [0, 1]: 

(1.2) y"(t) = f(t, y(t)), y(O) = a, y(l) = b. 

In general, for convergence, it is assumed that y(t) E C2[O, 1] (see e.g. Lees [6]). We 
obtain convergence results under assumptions on f of the same type as in (1). 

2. Convergence Results 1. Let N be some positive integer and h = I/N. 
Set t,, = nh, n = 0, 1, *., N; then Euler's method for solving (1.1) on [0, 1] is 
given by 

(2.1) Yn= vYn + hf(tn, YJ) n = 0, N-I . 

The following theorem gives the convergence properties of (2.1) to solutions of 
(1.1) as h -+ 0, where, by a solution to (1.1), we mean an absolutely continuous 
y(t) on [0, 1] which satisfies the initial condition, and the derivative y'(t) equals f every- 
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where except on a set of Lebesgue measure zero (see e.g. Coddington and Levinson [1, 
p. 42]). 

THEOREM 2.1. Suppose the solution of (1.1) exists, where f is a bounded Riemann 
integrable finction along the solution trajectory, and there exists k < c, such that*** 
for all t C [0, 1], a and b real 

(2.2) lf(t, a) - f(t, b)l ? kla - bl. 

Then 

(2.3) ly. - y(tn)I -- 0 uniformly, as h -O 0, hn -o t C [0, 1], 

where y(t) is the exact solution of (1.1). If, in addition, f is of bounded variation along 
the solution trajectory, then 

(2.4) KY. - y(t.)| = 0(h). 

Proof. Define the local truncation error T7 by 

(2.5) h7T.+1 = y(t.+1) - y(tn) - hf(tn, y(t)), n = 0, ., N - 1, 

where y(t) is the exact solution of (1.1). Observe 

ly- y(tl)I = h IT1I 

and by (2.2), 

ly. - y(t.)I - (I + hk) lyn-l - y(t,-0)I + h 1TnI, n = 2, , N. 

Hence, 
n-I n-I 

vYn - y(tn)l < h 1I (I + hk)Y lrn-il < ek E h |rn-j 

n-1 *I +, 

(2.6) < ek i f(t, y(t)) dt - hf(t,, y(tj)) 
n- 1 

nl-I 

?ek h1f h -I(tj y(t )), n = 1, N, 
i-O 

where 

in, E inf f(t, yQ)) < f*! < sup f(t, y(t)) M, 
I j j,I aelrt,s+ 

Thus. 

(2.7) yn - y(tn)f I ez ekhj (Mj - ini) < ek(Si - SO) 
j-O 

where S, and S2 are, respectively, the upper and lower Riemann sums for f0 f(t, y(t)) dt 
over the partition It0, o , tjN,I. Since f is Riemann integrable on the solution curve, 
(2.3) follows. If, in addition, f is of bounded variation on the solution curve, then 

*** G. Dahlquist has pointed out that the results of this theorem hold when this condition is 
replaced by the weaker one-sided Lipschitz condition la - b + Ih(f(t, a) - f(t, b))I 5 (I + k) la - bI; 
(concerning one-sided Lipschitz conditions, see Dahlquist [2]). 
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(2.4) follows immediately as a consequence of the uniform boundedness of the sum in 
(2.7) over all partitions of [0, 1]. 

3. Convergence Results 2. With the notation as in Section 2, a simple difference 
approximation to (1.2) is 

(3.1) u"+i - 2u, + u,-, = h2f(tnp Un), n = 1, , N - 1, 

uo = a, UN = b. 

The following theorem gives the convergence properties of a solution of (3.1) 
to a solution of (1.2), as h -+0. By a solution of the differential equation, we mean a 
function At) which has an absolutely continuous first derivative on [0, 1] satisfies 
the boundary condition, and y"(t) equals f, except on a set of Lebesgue measure 
zero. The proof of the theorem is similar to that of Theorem 2.1; we only sketch 
the differences. 

THEOREM 3.1. Suppose the solution to (1.2) exists, where f is a bounded Riemann 
integrable function along the solution trajectory. Assume, in addition, there exists 
K < 8 such that for all t E [0, 1] and x, y real 

(3.2) If(t, x) - f(t, y)j -< K |x - yI. 

Then 

(3.3) u's - y(t.) I-+ 0 uniformly, as h -+ 0, nh -+ t E [0, 1, 

where At) is the exact solution of the differential equation and u,, is the solution to 
(3.1). If, in addition, f is of bounded variation along the solution trajectory, then 

(3.4) lun - Y(t)J = O(h). 

Proof. Define the local truncation error r, by 

(3.5) h2Tr = y(t,+1) - 2y(t.) + y(t-.1) - h 2f(t,, y(t.)), 

n= 1, * , N - 1. Set v to be the vector with components v,, = At.) - u,, n = 1 
, N - 1. Then, from (3.5), v satisfies 

(3.6) v= -h2A-F - h2A-1r, 

where A-' = (r,j), i, j = 1, , N - 1, has elements 

i(N-j) 
N ' 

-r, , i>j, 

F has components F. = f(t,, At,)) - f(t,, u,), n = 1, * , N - 1, and r has com- 
ponents r,, n = 1, * , N - 1. From (3.6), it follows, by using (3.2), that 

2 N-1 

ntVgri b t 8 K Z h ITj. 

Integration by parts shows that 
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y(t..,) - 2y(t.) + y(tn-1) = f [y"Qt + 6) + y"(tn - 6)1(1 - 

Then using this, (3.5) and (1.2), we obtain 

N-1ih N-I h N-1 

h ITfl -< 2 E (M. - Mn) + 2 E (Mh-N M _l), n-I~~ n-I 2n-I 

where 

mn = inf f(t. + t, y(tn + t)), n = 0, 1, , N- 1, 
a 1k IO.h1 

and 

M = sup f(tn + t, y(t. + t)), n = 0, 1, , N- 1. 
E 10 ,AI 

Then, as in Theorem 2.1, the conclusions follow. 
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